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It is generally accepted among pavement engineers that the granular layers in flexible
pavement behave in a nonlinear mechanical way. Existing literature documents different
constitutive equations to model this nonlinearity. This paper compares four well-known con-
stitutive models: linear elastic, K − θ , Uzan–Witczak and Lade–Nelson. In the first stages of
numerical simulation, three static linear elastic models were constructed in CIRCLY, KEN-
LAYER and ABAQUS and the results of the analysis were compared with one another.
Following this, three-dimensional models were constructed in ABAQUS, and the four con-
stitutive models were implemented for use in the finite-element model. Three sets of material
parameters were considered for the analysis. The results calculated from each model were pre-
sented and compared and consisted of the following: surface deflection under loading wheels,
tensile strain at the bottom of an asphalt layer, and vertical strain and vertical stress at the top
of the subgrade layers. The development of the elastic modulus and vertical stress in the base
layer was also investigated and the contours of the vertical elastic modulus are presented.

Keywords: flexible pavement; ABAQUS; CIRCLY; KENLAYER; nonlinear; numerical
modelling

Introduction
The main purpose of flexible pavement design is to minimise the surface deflection caused by
any source of damage such as rutting or fatigue. One of the contributors to this damage is the
mechanical behaviour of granular layers (base, subbase and subgrade); expressed in design codes
in terms of stress, strain and displacement (AASHTO, 1993; AUSTROADS, 2004). Therefore,
estimating these parameters is essential in the design of pavement structure.

The estimation of parameters can be carried out by utilising experimentally developed equa-
tions, based on laboratory or field results. Although this approach can be simple and useable
in specific cases, the extrapolation of these equations to altered conditions such as different
environments, different loading conditions and different material types may not be valid.

An alternative to using the above-mentioned equations may be found in the utilisation of
numerical analysis to estimate the critical parameters. Recently, advancing computer technology
has created increased interest in this technique from pavement researchers. Numerical models
can be easily developed for and adapted to different conditions. However, the estimated values
must be validated in practical cases.
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2 B. Ghadimi and H. Nikraz

The numerical modelling of pavement granular materials considers two major methods. The
first is a simple method which assumes linear elasticity, while the second attempts to consider the
stress dependency of granular materials which lead to nonlinear elastic behaviour. The current
study will compare the results of linear elasticity with three well-known nonlinear constitutive
models in the numerical modelling of a sample of a three-layered flexible pavement system.

One of the useful and simple approaches that have been widely used in the numerical simula-
tion of flexible pavement design is to assume linear elastic behaviour in the material under study.
Assuming this elastic behaviour, the Boussinesq theory for elastic half-space can be applied.
Burmister has investigated such an approach for two-layered pavement structures (Burmister,
Palmer, Barber, Casagrande, & Middlebrooks, 1943) and other layered soil problems (Burmis-
ter, 1945). By manipulating linear elastic theory, the stress, strain and displacement in all points
of the medium can be calculated (Huang, 1993). Based on this assumption, different commercial
programmes have been developed. CIRCLY (Wardle, Youdale, & Rodway, 2003) and KEN-
LAYER (Huang, 1993) are two programmes which have been widely used among pavement
engineers. These programmes are mainly used to validate the initial results of more complex
calculation procedures (such as the finite-element procedure). This may be seen in such studies
as those conducted by Hadi and Symons (1996) where the CIRCLY programme was used to
compare results with the finite-element models constructed in MSC/NASTRAN and STRAND.
CIRCLY has also been used by Tutumluer, Little, and Kim (2003) in comparison with GT-PAVE
for cross-anisotropic materials. In 2006, Gedafa (2006) inducted an analysis of flexible pavement
using KENLAYER and HDM-4.

In the literature, the first reported use of finite element method (FEM) in flexible pavement
engineering was published in Duncan, Monismith, and Wilson (1968). Following this, Huang
(1969) used the FEM to calculate the nonlinear response of pavement layers. Since then, there has
been a great deal of research using FEM to conduct linear, nonlinear, static and dynamic analysis
(Cho, Mccullough, & Weissmann, 1996; Kim, 2007; Kim & Tutumluer, 2006; Kim, Tutumluer,
& Kwon, 2009; Mallela & George, 1994; Uddin, Zhang, & Fernandez, 1994; Zaghloul & White,
1993). A commercial finite-element programme, ABAQUS (Hibbit, 2010), is one of the most
well-known programmes used to investigate different types of material behaviour in this area.

While the linear elastic analysis is mainly conducted under the Hook’s Law constitutive model,
there are a variety of constitutive models that have been developed for the nonlinear analysis.
Comprehensive reviews on the proposed nonlinear constitutive models for granular materials
can be found in Rowshanzamir (1997), Kim (2007) and Bodhinayake (2008). A summary of
some of the most widely used models in pavement engineering to date is reviewed in the next
section. These models are K − θ , Uzan (1985), Witczak and Uzan (1988) and Lade and Nelson
(1987).

Relatively recently, Hjelmstad and Taciroglu (2000), proposed a new material resilient modu-
lus which depended upon both first and second invariants of the strain tensor rather than the stress
tensor. In this study, the material stiffness matrix was also driven and the model was implemented
in an ABAQUS simulation. The simulation was run for a sample triaxial model and the results
were validated against the experimental values.

Taciroglu and Hjelmstad (2002), proposed a new nonlinear elastic constitutive model which
coupled the shear and normal behaviour of materials in the stiffness matrix as a hyperelastic
model. The authors used an analytical approach, proposing an energy function density to develop
a new stress–strain relationship for the granular materials. Other analytical studies (e.g. Worku,
2012) have been conducted to estimate the modulus of foundation as a continuum medium with
a fixed thickness.

Experiments can be performed to either develop a new nonlinear constitutive model or to
validate the previously proposed models and evaluate their function. In this regard, the study
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Road Materials and Pavement Design 3

published by Fahey and Carter (1993) used an experimentally developed nonlinear model to
connect the shear modulus of sand to induced shear stress. They then applied their proposed
model to a finite-element simulation. Other major research carried out in recent years is outlined
below.

González, Saleh, and Ali (2007) carried out a series of simulations, along with field measure-
ment to evaluate the precision of nonlinear models in the prediction of mechanical responses
to a given geometry. They concluded that nonlinear models are able to predict valid responses
and that there is a difference among the different models. In 2009, Lee, Kim, and Kang (2009)
proposed a new nonlinear model which was normalised through an experimental method. The
proposed model linked the resilient modulus to induced stresses and it also stresses’ time-history.
The model was also applied in the finite-element theory. Attia and Abdelrahman (2011) studied
the effect of different constitutive models on the resilient modulus resulting from experimental
tests. In their study, they compared nine different constitutive models, including Uzan (2D and
3D), Witczak (five parameters) and K − θ . Araya, Huurman, Houben, and Molenaar (2011) and
Araya, Huurman, Molenaar, and Houben (2012) conducted a number of triaxial test and also
carried out an ABAQUS simulation. They developed a new test, termed RL-CBR, to establish a
connection between the California Bearing Ratio (CBR) and the stress-dependent resilient mod-
ulus. Mishra and Tutumluer (2012) studied the effect of aggregate shape and properties over the
resilient modulus, computed from different nonlinear models. Various experimental results were
investigated and compared against field observations.

These experimental investigations performed the function of providing input data for a
numerical simulation. In other words, the final purpose of any constitutive model is that it be
implemented in a numerical simulation and evaluated in a complete numerical analysis. In this
way, a constitutive model has an impact on the final design of pavement or any other structure.

Recently there has been increasing activity from pavement researchers in the investigation of
numerical simulations. For example, studies conducted by Kim (2007), Kim and Lee (2011),
Kim and Tutumluer (2006, 2010) and Kim et al. (2009) investigated the validity of a nonlin-
ear implemented modulus for the subbase, and a bilinear modulus for the subgrade in different
geometries and of different material types for a multiple wheel load, as found in airfields. Sahoo
and Reddy (2010) studied the effects of the nonlinear properties of granular layers on the critical
response of low-volume pavement. They used Drucker–Prager’s model as an elastoplastic model
to predict the pavement’s response. The model was constructed with the ANSYS programme
and the results were validated against the linear elastic response calculated by ELAYER. Kim
and Lee (2011) studied a 3D ABAQUS model assuming the Uzan-Witzak nonlinear model for
the base and a bilinear model for the subgrade. They compared their results against the linear
analysis. Cortes, Shin, and Santamarina (2012) implemented the nonlinear elastic model in a
finite-element simulation to analyse an inverted pavement system. Wang and Al-Qadi (2013)
used ABAQUS to simulate the dynamic anisotropic behaviour of granular materials under a
nonlinear assumption. They used the Uzan–Witzack model for nonlinear behaviour and assumed
orthotropic characteristics of the materials to model anisotropy. They compared their results
against field observations and linear analysis. According to this study cross-anisotropic behaviour
of granular can significantly influence the results of flexible pavement response when thin layer
asphalt is used.

Although the effect of cross-anisotropic behaviour of granular materials is significant, the main
focus of this study is to provide comparison basis for the different nonlinear elastic models used
for simulation of the base layer of the flexible pavement structure. Therefore, in this study effects
of cross-anisotropic behaviour are not simulated.

While there is an increasing trend to implement newly developed nonlinear elastic models in
finite-element simulations, a study to compare the effects of these nonlinear models against each
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4 B. Ghadimi and H. Nikraz

other in a numerical analysis can reveal the final function of each model. Such a comparison
provides the knowledge to choose a proper constitutive model for a specific simulation (here,
for a flexible pavement system). The work done by Attia and Abdelrahman (2011) provides
such a comparison in terms of experimentally calculated parameters for the different constitutive
models. However, a comparison study between the final implementation of different constitutive
models in numerical simulations of a sample pavement has yet to be conducted.

This study will compare the results of the implementation of four different constitutive models:
(1) linear elastic, (2) K − θ , (3) Uzan–Witczak and (4) Lade–Nelson.

The first step in the approach is to validate a 2D axisymmetric model. The 2D model is con-
structed assuming a linear constitutive model and Uzan’s (Uzan, 1985) nonlinear model. The
geometry of the model is the same as that used by Kim et al. (2009). In this stage it can be
seen that the effect of the boundary conditions is not significant, and the constructed model in
ABAQUS is reliable. Results of the linear analysis are validated by the results of CIRCLY,
KENLAER and Kim et al. (2009). The nonlinearity is then implemented into the finite-element
analysis for the same geometry. ABAQUS provides a facility to implement new material models
in a standard finite-element analysis through the writing of a UMAT code. The results of the
nonlinear model are validated from the results of Kim et al. (2009).

In the second step, four of the constitutive models mentioned before are numerically imple-
mented in a full 3D finite-element model. For the purposes of comparison, the material’s
properties are as presented in the experimental data set by Taciroglu and Hjelmstad (2002).
They presented the results of experimental tests and calculated the parameters of the various
constitutive models for different material samples. Therefore, for a given sample of material, the
parameters of all constitutive models are available. Moreover, nonlinearity is only assigned for
the granular layers used in the base and the other two layers (asphalt layer and subgrade) are
assumed to behave in a linear elastic manner. This also assists in the understanding of the role of
the nonlinear constitutive model.

Finally, the results of the four constitutive models in terms of critical responses of the
pavement and resultant resilient modulus are compared to each other and conclusions drawn.

Review of the nonlinear models used for granular materials
As it was reviewed in previous section, among all of nonlinear elastic models, three models
have been used widely in the field of flexible pavement engineering. The first most widely used
nonlinear model is known as K − θ ; this relates the resilient modulus (M r) to the bulk stress as
follows:

Mr = K
(

θ

P1

)n

, (1)

where K and n are the material parameters, θ is the bulk stress and P1 is the unit pressure to
normalise the θ . Seed, Chan, and Lee (1962) used this to predict the behaviour of soil under
repeated loading. Following Seed, other researchers began to use this model and modified it
(Hicks & Monismith, 1971). The model has the disadvantage of not including a true-stress path
which is dependent upon other stress invariants. This deficit has been rectified in the proposed
model by Uzan (1985). Uzan’s model relates the resilient modulus not only to the bulk stress,
but also to the deviatoric stress as follows:

Mr = K1

(
θ

P1

)k2
(

σd

P1

)k3

. (2)
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Road Materials and Pavement Design 5

Here σ d indicates the deviatoric stress and P1 is the unit pressure. K1, k2 and k3 are the mate-
rial parameters. The Uzan model accounts for axisymmetric conditions. This model was later
expanded by Witczak and Uzan (1988) to encompass full three-dimensional conditions:

Mr = K1P0

(
I1

P0

)k2
(

τoct

P0

)k3

, (3)

where I 1 and τ oct are the first invariants of stress tensors and octahedral shear stress, respectively.
P0 indicates the atmospheric pressure and K1, k2 and k3 are the material parameters.

Although the above-mentioned models include the stress dependency of materials, they are
mainly based on experimental observation rather than taken from a theoretical basis. As a con-
sequence, researchers have attempted to find a theoretically based nonlinear constitutive model
to simulate the nonlinear resilient modulus. One of the main analytical models of this kind orig-
inates from Lade and Nelson (1987). The authors derived a resilient model which depended
upon both mean normal stress and deviatoric stress. The model is based on the concept of elastic
energy and virtual work and it showed that the stiffness of the material should be dependent on
both the first invariant of the stress tensor and the deviatoric stress as follows:

Mr = K1

[(
I1

P1

)2

+ R
(

τoct

P1

)2
]k2

R = 6
1 + ν

1 − 2ν
.

(4)

The parameters are as stated before, with ν being Poisson’s ratio.
In this study the three above-mentioned nonlinear models are compared with linear elastic

analysis.

Problem definition
Simulation of any assumed layered pavement structure is required at a stage before the final
design. For this purpose, the numerical simulation will consider a constitutive model which can
represent the behaviour of specific layer. As stated in the previous section, with the granular
layer, the constitutive models can be divided in two major categories of linear elastic or nonlinear
constitutive models. Problems with linear elastic constitutive models can be solved in a closed-
form solution for a layered half-space. In this case, the pavement is assumed as layers of linear
elastic materials lying on top of each other and there is no limit at the bottom or sides. The tyre
load is applied on the top layer (asphalt layer) as a uniformly distributed pressure over a circular
area (representing the tyre contact area).

In the case of nonlinear constitutive models, a closed-form solution does not exist which neces-
sitates the application of more complex methods, such as the finite-element method. However,
as can be seen from the literature cited in the previous section, it is generally accepted that the
behaviour of granular materials can be described more appropriately by nonlinear equations.

In the finite-element method, a given domain (which is not infinite in any direction as assumed
in a closed-form solution) is discretised to elements in which the equilibrium equation is solved.
Therefore the number of elements, the geometrical boundary conditions on the sides and bottom
of the model, and the materials properties should be defined. To be sure that the effect of the
boundary conditions and elements on the final results are negligible, the results of linear elastic
material calculated from the finite-element model should be close to those calculated from the
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6 B. Ghadimi and H. Nikraz

closed-form solution. This is the first step in the analysis conducted in this study. After validation
of the results from the linear elastic material, the nonlinear constitutive equation should be coded
into the finite-element programme. In this step, the same approach used by Kim and Tutumluer
(2006) is manipulated to compare the results of the implementation of the constitutive equation
of Uzan–Witczak (Witczak & Uzan, 1988) in ABAQUS. In this step, the approach can generally
be validated.

Having the validation confirmed, the other constitutive equations are implemented in the
model in the same way. To have a clear comparison of the mechanical effect of these consti-
tutive equations in the final responses, the other layers (asphalt and subgrade) are modelled as
linear elastic materials.

Finally, the results calculated from each model are compared with one another and a mechan-
ical trend is abstracted. Although the actual values of the results depend on the layer thicknesses
and material properties of the other layers, the same trend in mechanical effect can be expected
from these constitutive models.

There are four critical responses of the layered flexible pavement structure which are used
in pavement design: (1) the surface deflection of the asphalt layer beneath loading tyre which
is an indicator of damage to the asphalt; (2) the tensile strain at the bottom of asphalt layer
which is used to determine fatigue performance of the asphalt layer; (3) compressive strain; and
(4) compressive stress at the top of subgrade layer which are indicators of rutting in the whole
pavement structure (Huang, 1993). These failure criteria are developed based on elastic response
of materials (whether linear or nonlinear elastic). In the following sections, these four critical
responses are selected as comparative parameters in all the numerical simulations.

In the following sections the mathematical equation behind the coding and the flowchart of
the used algorithm is presented. Properties of the constructed model in CIRCLY, KENLAYER
and ABAQUS are described, and the validation of coding for linear and nonlinear models is
conducted. In the next step, different constitutive models are implemented in the finite-element
model and the results of the critical responses calculated from constitutive models are com-
pared to each other. In order to understand exactly how the elastic modulus varies depending
on the variation of stress in the field, the results of the stress distribution and the development
of the elastic modulus are demonstrated. The contours of the elastic modulus in the plan of
loading wheels and an in-depth view of the nonlinear layer are then presented and described.
A final discussion to explain the major implication of the results is provided and conclusions
drawn.

Mathematical background and simulation procedure
Assuming elastic behaviour, the stress and strain tensors can be related through a material
stiffness matrix as follows:

σ = Cε, (5)

In the finite-element method, the stress and strain of the whole model is calculated in incre-
ments. In each increment a set of equations is constructed and the programme tries to solve the
tensor equation (Eq. (5)) for that increment. Therefore, in the FEM, the stress–strain relationship
is calculated in an incremental format as can be seen in the following equation.

�σ = C�ε, (6)

in the ABAQUS standard analysis.
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Road Materials and Pavement Design 7

The role of the constitutive model is to define the matrix C, known as material tangent stiffness
(also known as the material Jacobian matrix). In the ABAQUS programme, the material Jacobian
matrix is calculated in each increment, as can be seen in the following equation:

d�σ = ∂�σ

∂�ε
d�ε,

∂�σ

∂�ε
= C.

(7)

Figure 1 illustrates the flowchart of numerical simulation in ABAQUS.
The definition of any new constitutive model can be implemented through updating stresses

and the material Jacobian matrix in each increment according to a user-defined constitutive
equation. In the linear elastic constitutive model, Hook’s Law is applied, as stated in the

Figure 1. Flowchart of numerical simulation.
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8 B. Ghadimi and H. Nikraz

following equation:

�σ = 2G�ε + λI�ε : I , (8)

where I is the identity tensor, G is the shear modulus and λ is Lame’s constant.
From the theory of elasticity it is found that:

λ = MRν

(1 + ν)(1 − 2ν)

G = MR

2(1 + ν)
.

(9)

where M R is the resilient modulus. In nonlinear constitutive equations, this resilient modulus is
a function of the stress tensor:

MR = f (σ ). (10)

Therefore, in each increment the resilient modulus changes, following the change in stresses.
In this study, each nonlinear constitutive equation (Eqs. (1)–(4)) is employed to calculate the
material resilient modulus in a separate user-defined subroutine. Following this, the stresses and
material Jacobian are updated accordingly, and finally the equilibrium equation for the whole
model is solved.

Model characteristics and validation
For the purposes of verification, the same material properties and the geometry of the layers used
by Kim et al. (2009) are reconstructed in CIRCLY, KENLAYER and ABAQUS. Table 1 presents
the details of the model’s characteristics.

The coefficient of earth pressure is assumed to be 0.5 for all of the simulations. For the
finite-element model, a total of 5986 8-node biquadratic axisymmetric quadrilateral, reduced
integration elements (CAX8R) are used. The boundary conditions are those of rollers on the
sides and an encastré at the bottom.

To minimise the effects of the boundary conditions on the final results, the side is at a 3 m
distance from the centre of the load and the bottom is situated 21 m below the loading. The
loading is assumed to be a circular area (152 mm radius) and a load of 551 kPa is uniformly
applied over this area. Therefore the boundary conditions are located as recommended by Kim
et al. (2009).

Figure 2 illustrates the finite-element geometry, mesh distribution and contours of the vertical
deflection (U2) for the linear analysis.

In Figure 3, it is clear that the linear solution to the finite-element model is quite satisfactory,
and therefore the model geometry and mesh distribution effects could be considered as negligible.
In the next model, the nonlinear elasticity of materials is implemented for the same geometry.
The material properties are those as used by Kim et al. (2009). Here, the nonlinear constitutive

Table 1. Material properties for the linear axisymmetric model.

Layer Thickness (mm) Elastic modulus (MPa) Poisson ratio

Asphalt (AC) 76 2759 0.35
Granular (Base/Subbase) 305 207 0.4
Subgrade 20,000 41.4 0.45
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Road Materials and Pavement Design 9

Figure 2. 2D model geometry, mesh and vertical displacement for linear analysis.

model used is Uzan – 1995 (Eq. (1)) for the axisymmetric geometry. The only nonlinear layer
is the base layer and the properties of the other layers are the same as those stated in Table 1.
The properties used for nonlinear materials regarding Eq. (1) are K1 = 4.1 MPa, k2 = 0.64 and
k3 = 0.065.

Table 2 summarises the results of this simulation in comparison to the results calculated by
Kim et al. (2009). In this paper, compressive stress and strain are negative, while tensile stress
and strain are positive.

Figure 3 compares the results of vertical deflection calculated from CIRCLY, KENLAYER
and ABAQUS.

Having validated the method, a sample three-layered flexible pavement was constructed using
three-dimensional geometry. Figure 4 demonstrates the geometry of the model, mesh distribution
and vertical deflection (U3) for the linear analysis. The layer description of this model is indicated
in Table 3.

A mesh refinement analysis was conducted until the finer mesh could not change the results
of surface deflection (Figure 4). Finally a set of 104,832 8-node linear brick elements (C3D8R)
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10 B. Ghadimi and H. Nikraz

Figure 3. Comparison between results of surface deflection computed from CIRCLY, KENLAYER and
ABAQUS.

Table 2. Validation of linear and nonlinear axisymmetric model.

Critical response Linear
Kim–Tutumluer

(linear) Nonlinear
Kim–Tutumluer

(nonlinear)

δ (mm) surface − 0.930 − 0.930 − 1.276 − 1.240
εh (microstrains) bottom of AC 251 227 312 267
εv (microstrains) top of SG − 921 − 933 − 1170 − 1203
σv (MPa) top of SG − 0.040 − 0.041 − 0.054 Not presented

was selected to construct the whole model. The load was applied as a uniform pressure of 750
kPa over two rectangular areas (representing the contact surface of the tyres) 10 cm by 10 cm.
The tyres are assumed to have a distance of 1.8 m from each other.

The boundary conditions consisted of rollers on the sides and clamped at the bottom of the
model. The sides were located 4 m from the closest tyre and the bottom was 25 m below the
surface. This distance follows the recommendation of Kim and Tutumluer (2006) on minimising
the effects of boundary conditions on the results.

The mesh is finer close to loading tyre (at the middle of the model) while coarser at the bound-
aries. This strategy optimises the number of elements and therefore simulation time. In Figure 4,
three different layers of pavement structure are indicated with three colours (asphalt: green, base:
white, subgrade: red).

Effect of different constitutive models on critical responses of layered flexible pavement
The main variables in this study were the constitutive models used for the granular base layer.
As mentioned before, four types of constitutive equations were implemented. The experimental
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Road Materials and Pavement Design 11

Figure 4. 3D model geometry, mesh and vertical displacement for linear analysis.

Table 3. Material properties for 3D model.

Layer Thickness (mm) Elastic modulus (MPa) Poisson’s ratio

Asphalt (AC) 100 2800 0.35
Granular (Base/Subbase) 400 Variable Variable
Subgrade 24,500 50 0.3

data available from the study conducted by Taciroglu and Hjelmstad (2002) were used for the
parameters of the materials. Table 4 presents these material parameters for different cases.

The effect of the constitutive models’ equation can be clarified if the results of the numerical
analysis are compared via the range of material input parameters. From the experimental dataset
made available by Taciroglu and Hjelmstad (2002), three different samples of materials (Cases
1–3) were selected for the numerical implementation. These three cases, in effect, represented a
range of materials used in the base layer for flexible pavement: good-quality materials with high
density (Case 2), intermediate quality material (Case 1) and low-quality materials with lower
density (Case 3). The results of the numerical implementation of the constitutive models for
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12 B. Ghadimi and H. Nikraz

Table 4. Properties of nonlinear material used in a granular base layer.

Case number
Constitutive

model equations Material parameters

Case 1 (Sample HD1) Linear E = 240 (MPa), ν = 0.34
K − θ : Eq. (1) K = 259 (MPa), ν = 0.33, n = 0.05

Uzan–Witczak: Eq. (3) K1 = 459 (MPa), ν = 0.33, k2 = 0.03, k3 = 0.27
Lade–Nelson: Eq. (4) K1 = 242 (MPa), ν = 0.33, k2 = 0.13

Case 2 (Sample HD3) Linear E = 308 (MPa), ν = 0.4
K − θ : Eq. (1) K = 352 (MPa), ν = 0.4, n = 0.11

Uzan–Witczak: Eq. (3) K1 = 798 (MPa), ν = 0.41, k2 = − 0.14, k3 = 0.51
Lade–Nelson: Eq. (4) K1 = 301 (MPa), ν = 0.4, k2 = 0.20

Case 3 (Sample LD2) Linear E = 179 (MPa), ν = 0.36
K − θ : Eq. (1) K = 226 (MPa), ν = 0.34, n = 0.16

Uzan–Witczak: Eq. (3) K1 = 504 (MPa), ν = 0.35, k2 = 0.12, k3 = 0.37
Lade–Nelson: Eq. (4) K1 = 202 (MPa), ν = 0.36, k2 = 0.23

all three cases were represented in order to provide a better understanding of exactly how the
constitutive models function with different types of materials. The material properties of Case 1
represent the normal average elastic modulus used for base materials. Case 2 can be assigned to
hard and stiff materials and Case 3 is a representation of looser materials.

The experimental samples were selected from the one type of materials and the material
parameters for each model were driven from its specific test. A complete explanation of the
reliability of these parameters is presented in the work of Taciroglu and Hjelmstad (2002). As
the samples are the same, any differences in the results of the numerical model can be understood
as the effects of specific equations of a constitutive model and the experiments assigned to it.

The four critical responses calculated from numerical analysis are given in Table 5. Excluding
linear elastic results, this table can be understood in terms of the Lade–Nelson models which
resulted in the greatest values for all four critical responses. The results from the Uzan–Witczak
model are the lowest, and K − θ falls in-between.

Table 5. Comparison of critical responses calculated from different models.

Linear K − θ Uzan–Witczak Lade–Nelson

Case 1
δ (mm) surface − 0.188 − 0.224 − 0.196 − 0.294
εh (microstrains) bottom of AC 89.256 104.321 82.869 139.473
εv (microstrains) top of SG − 89.281 − 96.711 − 76.384 − 122.194
σv (kPa) top of SG − 4.176 − 4.605 − 3.678 − 6.068

Case 2
δ (mm) surface − 0.178 − 0.225 − 0.156 − 0.325
εh (microstrains) bottom of AC 82.172 105.145 53.319 152.726
εv (microstrains) top of SG − 82.422 − 101.615 − 44.172 − 133.539
σv (kPa) top of SG − 3.867 − 4.840 − 2.237 − 6.782

Case 3
δ (mm) surface − 0.203 − 0.262 − 0.214 − 0.294
εh (microstrains) bottom of AC 100.284 126.307 94.177 139.473
εv (microstrains) top of SG − 99.360 − 115.904 − 91.494 − 122.194
σv (kPa) top of SG − 4.645 − 5.598 − 3.678 − 4.387
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Road Materials and Pavement Design 13

It can be observed that the value of the surface deflection under load is less variable in dif-
ferent materials. The linear elastic analysis resulted in the measurements of 0.178–0.202 mm
for three different cases of materials (0.024 mm difference). For K − θ this was from − 0.224
to − .262 mm (0.038 mm difference), for Uzan–Witczak the value changed from − 0.156 to
− 0.214 mm (0.058 mm difference) and for the Lade–Nelson it changed from − 0.294 to − 0.325
mm (0.031 mm). It can be understood that the Uzan–Witczak method has a greater sensitivity to
material parameters in terms of surface deflection results.

Tensile strain at the bottom of the asphalt and the vertical strain on the top of the subgrade
are the key parameters in the calculation of fatigue repetition and rutting in the design of flexible
pavement codes (AUSTROADS, 2004), respectively. Here, looking at the range of differences
in the different constitutive models regarding the changes in the material, it can be stated that the
same trends of sensitivity for the constitutive models are observable. Uzan–Witczak shows the
most variation and Lade–Nelson shows the least variation.

Here it should be noted that in all four constitutive models it is only that of Lade–Nelson which
also considers the effects of Poisson’s ratio on the resilient modulus.

Figures 5–7 illustrate the normalised value of critical responses calculated from four consti-
tutive models for three cases of material parameters. Here the results are divided by the values
calculated from the linear analysis in order to have a more effective comparison in terms of the
actual effect of each model.

Figure 5 represents the results of four normalised critical responses for the material parameters
in Case 1. Here the largest difference is related to the Lade–Nelson model. The surface deflection
and horizontal strain calculated from this model is 56% larger than the linear elastic calculation.
In the K − θ model, the highest difference is 19% for the calculated surface deflection and for
Uzan–Witczak it is the vertical strain that shows a − 14% difference. However, it should be noted
that the Uzan–Witczak values are lower than values from the linear analysis with the exception
of the value for surface deflection.

Figure 5. Comparison of the normalised critical response for Case 1.
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14 B. Ghadimi and H. Nikraz

Figure 6. Comparison of the normalised critical responses for Case 2.

Figure 7. Comparison of the normalised critical responses for Case 3.

The results of the material parameters for Case 2 are presented in Figure 6. In this case (where
the material has a stiffer Young’s modulus and a larger Poisson’s ratio compared to Case 1)
the greatest difference calculated is again for Lade–Nelson. Here the greatest difference occurred
with regard to the horizontal strain at the bottom of the asphalt layers and it reached up to an 86%
larger value from the linear elastic calculation. This is a very significant difference and in partic-
ular it could have a critical effect on the calculation of the allowable number of repetitions for
fatigue. The difference calculated for the K − θ model was between 23% (for the vertical strain
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Road Materials and Pavement Design 15

of the subgrade) and 27% (for the horizontal strain of the asphalt layer) which is comparable to
that calculated in Case 1 for this model.

The calculated difference for Uzan–Witczak in this case is from − 46% (vertical strain of
subgrade) to − 13% (surface deflection). The point which should be mentioned here is that the
dependency of the Lade–Nelson model on Poisson’s ratio has a significant effect here. Referring
to Table 4, it can be seen that Case 2 has a higher value of Young’s Modulus and a higher
value of Poisson’s ratio (308 Mpa, 0.4) than Case 1 (240 Mpa, 0.34). However, the effects of
Poisson’s ratio can only be seen in the Lade–Nelson model, while the other three constitutive
models completely neglect this effect. Therefore, this great difference can be understood as being
due to the nature of the constitutive model equation in Lade–Nelson.

The calculated results for the material parameters in Case 3 are illustrated in Figure 7. The
highest difference is again related to Lade–Nelson reaching 99% larger values (almost double)
for the surface deflection. The values for K − θ changed from 17% (vertical strain of subgrade) to
29% (surface deflection) and the range of difference for Uzan–Witczak was from − 8% (vertical
strain of subgrade) to 5% (surface deflection).

Mechanical behaviour of the granular layer with different constitutive models
It is of interest to consider making comparisons regarding the increasing trend of the modulus
during the incremental loading. Figures 8–10 represent these trends in three cases.

The x-axis in these figures shows the increments of analysis where load increases linearly from
0% to 100% of tyre pressure during the increments. As mentioned previously, in the ABAQUS
programme the load is applied with differing increments. The resilient modulus in nonlinear
constitutive models is a function of the stress state, the modulus then varies in each increment
for all of the elements of base layer. However, the increasing trend of a point in the centre of the
loading at the top of the base layer has been selected for representation here.

Figure 8 shows the increasing trends for the materials in Case 1. As can be observed, all of the
nonlinear constitutive models have a final value which is less than the value of the linear model

Figure 8. Increase in the nonlinear resilient modulus at the top of base layer regarding the analysis
increments – Case 1.
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16 B. Ghadimi and H. Nikraz

Figure 9. Increase in the nonlinear resilient modulus at the top of base layer regarding the analysis
increments – Case 2.

Figure 10. Increase in the nonlinear resilient modulus at the top of base layer regarding the analysis
increments – Case 3.

except for Uzan–Witczak. The Lade–Nelson model shows the lowest trends and final values in
this case, and the K − θ falls between that of Lade–Nelson and Uzan–Witczak.

Compared to Case 1, Case 2 shows that differences in trends have increased significantly. As
shown in Figure 9, Uzan–Witczak passed the linear elastic modulus after the first few increments.
In contrast, Lade–Nelson showed a very slight increasing trend in this case. The contribution of
Poisson’s ratio to the constitutive model of Lade–Nelson has clearly affected this trend.
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Road Materials and Pavement Design 17

Effect of Material in Case 3 has been illustrated in Figure 10. The value of modulus calculated
from Uzan–Witczak has passed the linear elastic modulus in 70% of loading increments. As the
other cases Uzan–Witczak has the highest value, then the linear elastic modulus following by
K − θ and Lade–Nelson.

It is worth mentioning that Uzan–Witczak has the highest range of variation with respect to
material change. This can also be understood from the results presented in Table 5. It can also be
concluded that the Uzan–Witczak model has a rapidly increasing trend due to increasing stresses.
This is because of the nature of the exponential function of Uzan–Witczak. Comparing equations
1, 2 and 4, it can be seen that K − θ is independent of deviatoric stress, Uzan–Witczak has two
terms (depending on bulk and deviatoric stress simultaneously) which multiply and intensify
each other, and Lade–Nelson has two terms (depending on bulk and deviatoric stress) but these
terms do not multiply.

Increasing stiffness of the base layer also leads to an increase in calculated stress in the layer
itself. In Figures 11–13, the distribution of vertical stress across the depth of the base layer is
presented for three cases.

In material Case 1, the calculated stress distribution in depth for Uzan–Witczak, linear elastic
and K − θ are roughly similar (Figure 11) while the Lade–Nelson model has less potential to
bear vertical stresses. Here, with Uzan–Witczak, the stress varies from − 56 kPa at the top of the
base to − 5 kPa at the bottom. The variation range for the linear model is from − 49 to − 6 kPa.
For K − θ this range is from − 43 to − 6 kPa. It is clear that the variation in these three models
demonstrates a relatively close relationship ( − 56 to − 43 kPa at top and − 6 to − 5 kPa at the
bottom). However, a considerable difference is presented in Lade–Nelson where the stress varies
from − 27 to − 8 kPa. Moreover, the stress distribution of Lade–Nelson is more uniform than in
the other three models.

In Figure 12, the stress distribution of material Case 2 is presented. The three models here
show different results. The calculated vertical stress for Uzan–Witczak is − 85 kPa at the top
and − 5 kPa at the bottom of the base layer. These values for the linear model are − 55 to − 5

Figure 11. Distribution of vertical stress in base layer – Case 1.
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18 B. Ghadimi and H. Nikraz

Figure 12. Distribution of vertical stress in base layer – Case 2.

Figure 13. Distribution of vertical stress in base layer – Case 3.

kPa and for K − θ they are − 45 to − 7 kPa. Finally, the vertical stress values for the Lade–
Nelson model are − 23 kPa at the top and − 9 kPa at the bottom. Therefore, the variation of
results among the three models is greater than those observed in Case 1. Moreover the results of
Lade–Nelson show a stronger trend to more uniform distribution.

In Figure 13, the vertical stress distribution for material Case 3 is illustrated. Here the range of
values for different models is as follows: − 50 to − 6 kPa for Uzan–Witczak, − 43 to − 6 kPa
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Road Materials and Pavement Design 19

for linear elastic, − 32 to − 7 kPa for K − θ and − 16 to − 8 kPa. From these results it can be
understood that in going to the depth of the base layer, the results of the vertical stress distribu-
tion calculated from Uzan–Witczak have more similarity to the linear elastic results. Moreover
the calculated results from Lade–Nelson are more uniform compared to the two previous cases
(Cases 1 and 2).

To gain a better understanding of how the vertical modulus has been distributed in the base
layer, the contours of the modulus at the top and inside of the base layer are presented.

To calculate the vertical modulus of the base layer, Equation (12) was used:

Ez = σ n
zz

εn
zz

, (11)

where Ez represents the vertical modulus in the final increment (increment number n) and z is the
direction of the depth of the model. For this reason, when the calculated strain is too small (near
zero), a high value of Ez can be virtually calculated, while this very stiff calculated value is not a
meaningful value and should be neglected. This will happen when the strains are out of the area
around the loading wheels. Therefore the calculated values for contours in the area outside the
loading wheels should be considered with caution.

Figures 14 demonstrates the distribution of the vertical elastic contours at the top of the base
layer in the X −Y plan (wheel axle is parallel to Y-axis) for material Case 1.

The contours relating to K − θ , Lade–Nelson and Uzan–Witczak are presented, respectively.
Comparing these three contours reveals that in the Lade–Nelson model the modulus is more uni-
formly distributed between the two loading wheels. In the K − θ model, clear contour lines can
be distinguished which indicates an uneven distribution of the vertical elastic modulus between
loads. For Uzan–Witczak, the values are distributed extremely unevenly (having a maximum
value beneath the centre of the load and a lower value between the wheels).

The distribution of the vertical modulus in the depths of the base layer is another point worthy
of consideration. Figure 15 demonstrates this distribution for materials Case 1 in K − θ , Lade–
Nelson and Uzan–Witczak.

Figure 14. Contours of resilient modulus in plane at the top of base layer for different models.
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20 B. Ghadimi and H. Nikraz

Figure 15. Contours of resilient modulus in the depths of base layer for different models between two
wheels.

Comparing these three constitutive models, it can be understood that the uniformly distributed
elastic modulus occurred again in Lade–Nelson, and this distribution is severely uneven for
Uzan–Witczak. In Uzan–Witczak, the elastic modulus increased in a column-like way beneath
the centre of the load (Figure 15). Another interesting phenomenon is the formation of stiffer
materials (higher elastic modulus) between the two wheels. This occurred in all three cases.
However, this can be seen more clearly in Lade–Nelson (Figure 15) where the highest value of
the elastic modulus actually occurred not beneath the load but in an area between the two wheels.
It should be noted that geometry of loading tyre and the tyre pressure define the stress field. On
the other hand, the resilient modulus is defined as a function of stress field. Therefore it should
be noted that the stiffer behaviour of granular is expected where there is higher stress.

Discussion
As an overall comparison, some of the major points can be further discussed. First, the imple-
mentation of the Uzan–Witczak model resulted in a general “stiffer” behaviour than that in other
constitutive models (including linear elastic). Here the word “stiff” refers to less deformation
(deflection and strain) against the applied pressure. In this regard, Lade–Nelson has the “softest”
behaviour (Table 5 and Figures 5–7). The stiffness can be related to the trend of the development
of the elastic modulus with respect to an increasing load increment and accordingly, stresses in
the base layer. Here again the rate of increase in the elastic modulus of Uzan–Witczak is higher
than that in the other constitutive models (Figures 8–10). This is due to the dependency of the
Uzan–Witczak constitutive equation on both bulk stress and deviatoric stress (Eq. (3)). Although
the Lade–Nelson model is also dependent upon these two, the nature of the equation is different
from that of Uzan–Witczak. In Lade–Nelson, the two terms are simply added to each other, while
in Uzan–Witczak these two terms are multiplied and therefore they greatly intensify the effect of
the increasing stress. Another cause of the stiffer behaviour of Uzan–Witczak can be explained
when the development of stress in the base is investigated. Calculations showed that having a
higher elastic modulus in loading increments leads to higher stress in the same layer. Considering
the dependency of the modulus on the stress values this itself results in a higher elastic modulus.
This demonstrates another reason for the “stiffer” behaviour in Uzan–Witczak (Figures 11–13).

Consideration of the distribution of the elastic modulus according to the equation of the con-
stitutive model explains the actual mechanical effect of each model. In this study, it can be seen
that the Uzan–Witczak model forms a high elastic modulus column beneath the load centre, while
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Road Materials and Pavement Design 21

in the Lade–Nelson model, the elastic modulus is more uniformly distributed between the two
wheels. This means that the Uzan–Witczak model has a major value for the stress of the loading
wheel in the area beneath the wheels. In other words, in this model the stress has little distribution
in a lateral direction, while in Lade–Nelson the lateral distribution of stress is more considerably
developed. The distribution of the elastic modulus from the K − θ model is not as uniform as
that of Lade–Nelson and not as localised as Uzan–Witczak. Moreover, in all models there is a
localised high modulus area between the loading wheel, and this area is more distinguishable in
Lade–Nelson.

Finally, it should be noted that although changes in the asphalt and subgrade properties (includ-
ing thickness and material properties) will produce different results, the trend in mechanical
behaviour is expected to be the same regarding the implementation of constitutive models.
Therefore, stiffer responses (as mentioned before) can be expected from Uzan–Witczak, and
more uniformly distributed responses can be expected from Lade–Nelson in any of the cases.
Among all of the models, it is deemed that Uzan–Witczak model represents the response
of granular materials in more proper way. The reason is that it can consider both deviatoric
and confined pressure into account. The Uzan–Witczak model has been accepted more widely
among the researchers with the same reason (e.g. Attia & Abdelrahman, 2011; González et al.,
2007).

Conclusion
Three different nonlinear constitutive equations for the resilient modulus of granular material
used in the base layer of flexible pavement were compared to each other, and a linear elastic
analysis conducted. A sample layered flexible pavement was modelled three dimensionally and
the constitutive models were implemented in the ABAQUS finite-element programme through
UMAT subroutines. To consider the effect of material variation three different material parame-
ters were considered. The results of the analysis indicated that the constitutive model proposed
by Uzan–Witczak resulted in the lowest responses in terms of surface deflection and horizontal
strain at the bottom of the asphalt layer. The Lade–Nelson model illustrated the largest values
compared to other models, and the results calculated from K − θ fall in-between these two. The
increase in the elastic modulus with respect to loading increments is larger in the Uzan–Witczak
model and smaller in the Lade–Nelson model. Moreover, the distribution of the elastic mod-
ulus is highly localised around the loading wheels in Uzan–Witczak but it is more uniformly
distributed in Lade–Nelson.
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