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A computational analysis is carried out to ascertain the effects of steady and pulsatile co-current flow, on
the dynamics of an air bubble rising in a vertical tube containing water or a solution of
Carboxymethylcellulose (CMC) in water. The mass fraction (mf) of CMC in the solution is varied in the
range 0.1% 6mf 6 1% to accommodate zero-shear dynamic viscosities in the range 0.009–2.99 Pa-s. It
was found that the transient and time-averaged velocities of Taylor bubbles are independent of the bub-
ble size under both steady as well as pulsatile co-current flows. The lengths of the Taylor bubbles under
the Newtonian conditions are found to be consistently greater than the corresponding shear-thinning
non-Newtonian conditions for any given zero-shear dynamic viscosity of the liquid. In contrast to obser-
vations in stagnant liquid columns, an increase in the dynamic viscosity of the liquid (under Newtonian
conditions) results in a concomitant increase in the bubble velocity, for any given co-current liquid
velocity. In shear-thinning liquids, the change in the bubble velocity with an increase in mf is found to
be relatively greater at higher co-current liquid velocities. During pulsatile shear-thinning flows, distinct
ripples are observed to occur on the bubble surface at higher values of mf, the locations of which remain
stationary with reference to the tube for any given pulsatile flow frequency, while the bubble propagated
upwards. In such a pulsatile shear-thinning flow, a localised increase in dynamic viscosity is accompanied
near each ripple, which results in a localised re-circulation region inside the bubble, unlike a single
re-circulation region that occurs in Newtonian liquids, or shear-thinning liquids with low values of mf.
It is also seen that as compared to frequency, the amplitude of pulsatile flow has a greater influence
on the oscillating characteristics of the rising Taylor bubble. The amplitude of oscillation in the bubble
velocity increases with an increase in the CMC mass fraction, for any given value of pulsatile flow
amplitude.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

Many industrial, natural and biological systems are observed to
have flows where large contiguous bubbles (Taylor bubbles) travel
in comparably narrow passages filled with liquid – a flow regime
typically identified as slug flow. Examples include phase-change
cooling systems, oil and gas transport systems, mud-volcanoes,
food processing equipment, reverse osmosis systems and emboli
in blood streams. In columns or tubes with stationary liquids, the
rise velocity of an entrapped bubble is governed by the buoyancy,
volume of the bubble, size of the tube and the fluid (viscosity and
surface tension), while the mean velocity of the liquid becomes an
additional controlling parameter for bubbles rising in flowing
liquids.

The dynamics of Taylor bubbles in stationary and flowing liq-
uids have been studied in considerable detail since the 1940s
(Dumitrescu, 1943). Davies and Taylor (1950) carried out one of
the earliest analytical and experimental studies on elongated
Taylor bubbles rising in stagnant liquids and showed that the rise
velocity of Taylor bubble in a liquid-filled tube is proportional to
ffiffiffiffiffiffi
g d

p
where d is the diameter of the tube. Uno and Kintner

(1956) carried out experimental studies to determine the rise
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velocity of air bubbles in quiescent liquids (for a wide range of liq-
uid viscosities and surface tensions) in a vertical tube
(2.09 < d < 15.25 cm). They correlated the rise velocity of the bub-
ble in terms of the velocity of an equivalent sphere moving in
the liquid, corrected by a factor that depended on the diameter
of the tube and interfacial surface tension, and independent of liq-
uid viscosity. Maeda (1975) carried out experiments on the rise
velocity of spherical and Taylor bubbles in stationary and flowing
liquids (air–water systems) inside vertical cylindrical tubes. They
showed that in quiescent liquids, there is a critical diameter
(depending on the bubble size) of the tube below which the bubble
may not rise freely. In flowing liquids, they showed that the bubble
rise velocity is a linear function of the liquid velocity and the veloc-
ity of rise of bubble in a stationary liquid (given by Davies and
Taylor, 1950). They suggested that the balance of buoyancy and
drag is the primary mechanism determining the kinetics of smaller
spherical and ellipsoidal bubbles, while Taylor instability on the
bubble surface controlled the dynamics of Taylor bubbles.

Quan (2011) carried out computational analysis on the effects
of co-current (both upward and downward flows) liquid velocities
on the dynamics of a rising Taylor bubble for a range of Archimedes
numbers (Ar = ql [ql � qb]gd3/ll

2). It was shown that during
upward liquid flows, the tail of the bubble elongates and may even
oscillate with an increase in Ar, while the downward liquid flow
tends to shorten the bubble, and even lead to a rounded shape at
the rear of the bubble under sufficiently high liquid velocities.
They confirmed that during both upward as well as downward
directions of the liquid flow, the terminal velocity of the bubble
could be related in terms of the mean liquid velocity and the bub-
ble rise velocity in quiescent liquid as given by Maeda (1975). Kang
et al. (2010) carried out similar computational simulations using a
front-tracking Volume-Of-Fluid (VOF) technique and concluded
that the Eotvos number (Eo) and Archimedes number (Ar) signifi-
cantly influenced the shape of the bubble; greater Eo and Ar
resulted in longer bubble tail and a larger wake behind the bubble.
In a recent experimental study on slug flows, Kajero et al. (2012)
characterised the effects of viscosity over the range 5–
5000 m Pa-s on the length of Taylor bubbles, liquid film thickness,
pressure gradients, and slug intermittencies, for superficial gas
velocities in the range 0.02–0.361 m/s. They pointed out that the
length of Taylor bubbles, the liquid film thickness adjacent to the
bubble, and the pressure gradient in the slug, increase whereas
the slug frequency and length of liquid slug decrease with an
increase in liquid viscosity. Nogueira et al. (2005) employed parti-
cle image velocimetry (PIV) and pulsed shadowgraphy to study the
effects of liquid viscosity on the flow-field and dynamics of a Taylor
bubble rising in stagnant and co-current flows in a vertical tube.
Different aqueous solutions of glycerol were used to obtain liquid
viscosities in the range of 10�3–1.5 Pa-s. It was reported that the
inverse viscosity number (Ar0.5), and the Reynolds number based
on the liquid velocity relative to the bubble, dictate the wake flow
patterns behind the bubble under stagnant and co-current liquid
conditions, respectively. It was also found that the length of the
wake behind the Taylor bubble was solely depended on Ar0.5 and
increased with an increase in Ar0.5 for stagnant liquid conditions,
while the dependency was with the relative Reynolds number for
co-current flow conditions. They also identified that the
laminar-turbulent transition in the wake occurs for the relative
Reynolds number in the range 175–575.

Some of the aforementioned studies highlighted the effects of
viscosity on the dynamics of Taylor bubbles, typically from studies
using different liquids. However, the understanding of bubble
dynamics in non-Newtonian liquids (generally shear thinning or
viscoelastic rheology) is important in several industrial applica-
tions including food processing (aeration of molten chocolate),
de-aeration of paints, oil exploration and drilling applications,
and biological systems such as blood embolism (Johnson and
White, 1993). Despite the relevance to industrial, natural and bio-
logical processes, the literature on the dynamics of Taylor bubbles
in non-Newtonian liquids is very limited, and much of the litera-
ture on the bubble dynamics that is available deals with
nearly-spherical bubbles (Herrera-Velarde et al., 2003; Hassager,
1979; Margaritis et al., 1999; Li et al., 2012; Amirnia et al., 2013;
Funfschilling and Li, 2001).

Sousa et al. (2005) carried out experiments using PIV and shad-
owgraphy to determine the flow field and velocity of Taylor bub-
bles rising in stagnant non-Newtonian solutions of
Carboxymethylcellulose (CMC) in water, which predominantly
had a shear-thinning rheology for the concentrations they consid-
ered. It was reported that the shape of bubble nose remained
almost identical for the range of CMC mass fractions studied
(0.1–1%), while the shape of the bubble tail varied significantly.
They pointed out that with an increase in the solution viscosity,
the wake flow pattern varied from turbulent to laminar, and a neg-
ative wake was observed for the higher CMC mass fractions. An
increase in mf was found to decrease the rise velocity of Taylor
bubbles in stagnant liquids. In a subsequent study, Sousa et al.
(2007) reported that for relatively lower mass fractions of CMC
or polyacrylamide, the interaction between Taylor bubbles was
similar to that found in Newtonian fluids, while for mf = 1% (CMC
solution), a negative wake formed behind the Taylor bubbles,
inhibiting coalescence in the bubbles. Carew et al. (1995) carried
out experimental studies on rising Taylor bubbles in Newtonian
and shear-thinning liquids in inclined tubes. They showed that
an increase in the liquid viscosity or increase in surface tension
caused the nose region of the bubbles to become blunt and
resulted in a reduction in the bubble rise velocities.

Pulsatile non-Newtonian flows with entrapped bubbles occur
when gas emboli get into the blood stream in circumstances such
as accidental introduction during cardio-vascular surgeries or dur-
ing decompression sickness. Bubbles are also introduced into the
blood stream deliberately to block the blood supply to tumours
in blood vessels. In an ongoing experimental research by the
authors, it was found that introduction of pulsations in the fluid
velocity can result in the breakup of entrapped bubbles in closed
loop fluid systems which require gas evacuation. Pulsatile slug
flows with elongated Taylor bubbles are also found in advanced
high performance heat sinks such as pulsating heat pipes (Tong
et al., 2001).

A survey of the literature reveals that there are significant
reports on the dynamics of Taylor bubbles rising in stationary
and co-currently flowing Newtonian liquids, and there have been
some recent studies involving non-Newtonian liquids. It is well
known that the introduction of flow pulsations result in complex
fluid dynamic behaviour in both Newtonian as well as
non-Newtonian liquids, however, the influence on entrapped
Taylor bubbles is largely unexplored. Separate to pulsatile flows
with entrapped bubbles, there has been some recent interest in
the study of Taylor bubbles in oscillating tubes, undergoing vibra-
tion (transporting two-phase mixtures). Brannock and Kubie
(1996) carried out one of the earliest studies on the effect of wall
oscillations on the rise velocity of Taylor bubbles. They found that
bubble rise velocity decreased with an increase in vibration–accel-
eration, and identified a critical acceleration for complete bubble
breakup. In a subsequent study, Kubie (2000) reported that hori-
zontal vibrations applied to the tube resulted in an increase in
the bubble velocity for an increase in vibration–acceleration.
From a similar study, Madani et al. (2009) observed that, for weak
wall accelerations, the mean bubble rise velocity decreases with
the vibration–acceleration, and there existed a critical acceleration
beyond which the average bubble velocity increased while the
fluctuating bubble velocity decreased. They also noticed that
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capillary waves that originated at the nose of the Taylor bubble and
propagated downwards along the bubble when wall oscillations
were present. Such capillary waves have also been observed in
conditions without wall oscillations, primarily due the unsteady
oscillations in the tail of the bubble that and propagate upwards
along the direction of bubble rise (Liberzon et al., 2006).

Pulsatile liquid flows with entrapped bubbles in tubes, can
potentially result in bubble shape oscillations, and even bubble
disintegration depending on the characteristics of the pulsatile liq-
uid velocity. Considering that the characteristics of pulsatile flows
of shear-thinning liquids are significantly different from that of
Newtonian liquids in tubes (El-Sayed, 1984), the dynamics of
Taylor bubbles in pulsatile non-Newtonian liquid systems can be
vastly different to that in Newtonian liquids, due to the local vis-
cosity variations. It is reasonable to say that there has been no
detailed analysis of the effects co-current flow pulsations on the
dynamics of Taylor bubbles in pulsatile Newtonian or
non-Newtonian flows. With this motivation, the present research
deals with a fundamental study that aims to understand the
dynamics of Taylor bubbles in co-current steady and pulsatile flow
of Newtonian and shear-thinning liquids in a vertical tube. Two
different types of two-phase fluid systems are considered for the
study: (i) air bubbles in water; and (ii) air bubbles in CMC-water
solution.

Problem description, geometry and computational domain

A schematic of the tube geometry considered for the present
study is shown in Fig. 1(a) and the corresponding computational
mesh for a representative section of the tube is shown in Fig. 1(b).
As shown in the figure, the physical domain consists of a tube of
length, l and diameter, d, that includes an inlet and an outlet
through which water or CMC solution flows, with an entrapped
bubble of known volume (or equivalent diameter de). A fully
developed velocity profile determined from a separate simulation
is imposed at the inlet of the tube for steady flows, while a sinu-
soidal oscillation (dimensionless amplitude A, and frequency, f)
about the fully developed mean velocity profile is imposed for
pulsating flow conditions to represent a sinusoidal variation in
mass flow rate with time. The dimensionless pulsatile flow ampli-
tude is defined as the ratio of the pulsatile velocity amplitude to
the mean velocity of the liquid. It is realised that the fully devel-
oped pulsating flow velocity profile does not resemble a propor-
tional variation in the local velocity with the imposed
mass-flow pulsation (El-Sayed, 1984; Haddad et al., 2010), and
may even result in local flow reversals for certain ranges of
frequencies and amplitudes of pulsation. Hence, a series of
simulations were performed to determine the entrance length
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Fig. 1. Schematic of the axisymmetric (a) geometry of the tube, and coordinate sys
(distance from the inlet before the flow becomes hydrodynami-
cally fully developed) during pulsating flow. For the range of pul-
sation frequencies, amplitudes, flow rates and fluids considered
for the present study, the entrance length is determined to be less
than 20 � d from the inlet, when the oscillating velocity profile is
imposed at the tube-inlet. It is ensured that the total length of the
tube (l = 1.2 m) considered for the simulations is long enough to
accommodate this entrance length and also for the bubble to
reach terminal velocity during steady flow or oscillating terminal
velocity during pulsating flow. A representative typical pulsating
velocity imposed at the inlet of the tube, and the fully developed
spatial velocity distribution obtained at a certain distance down-
stream, during different phases of a pulsation cycle is shown in
Fig. 2(a). The corresponding entrance length can be identified
from the velocity gradient (given by ouz/oz|x=0) along the direction
of the tube axis from Fig. 2(b).

While the schematic shown in Fig. 1(a) represents an axisym-
metric cylindrical tube, an equivalent full 3D tube geometry is also
employed for the simulation of some cases considered for the pre-
sent study that involve bubble diameters smaller than the diame-
ter of the tube, to ensure accurate prediction of the
three-dimensional flow physics. It is seen that, for larger bubble
diameters (Taylor bubbles), the computational predictions includ-
ing the bubble shape and bubble rise velocities from the 2D
axisymmetric simulations were in in excellent agreement with
those obtained using full scale 3D simulations. A quantitative com-
parison is provided later in section ‘Validation’ of this paper. As
shown in Fig. 1(b), a fully structured spatially varying
non-uniform mesh is used for the simulations, where the mesh is
finer near the wall, and uniform along the axis of the tube. For
the 3D simulations, a hexahedral mesh is used with runtime mesh
refinement about the liquid–bubble interface. The mesh used for
the simulation of the results reported in the present study was
determined from a detained grid sensitivity analysis.
Methodology

The governing equations for the conservation of mass and
momentum are solved using the finite-volume based interFoam/
interDyMFoam solver in OpenFOAM-2.1. The interDyMFoam solver
uses the same formulation as the interFoam solver, but facilitates
adaptive mesh refinement. The solvers use an algebraic
volume-of-fluid (VOF) approach which is well-established for sim-
ulation of flows where two immiscible fluids are present and a dis-
tinct surface interface can be defined. In VOF approaches, the
different phases (liquid and air in the present work) are repre-
sented in the domain in terms of their volume fraction as:
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ab ¼ 1� al ð1Þ

The subscripts l and b correspond to the liquid and bubble,
respectively. A single equation for each, mass (continuity) and
momentum conservation, is used to describe the system, using
the properties (density and viscosity) determined locally in the
domain based on the properties of each phase, and the local vol-
ume fraction as follows:

Continuity : r � u!¼ 0 ð2Þ

Momentum : @ðq u!Þ=@t þr � ðq u!u!Þ

¼ �rpþr � ðlr u!Þ þ q g!þ f r ð3Þ

A separate transport equation is solved for the volume fraction as,

@al=@ t þr � ðal u!Þ þr � ½uc
!alð1� alÞ� ¼ 0 ð4Þ

where uc
! is designated as the compression velocity. This is an

additional term included in the conservation equations to ensure a
sharply defined interface between the liquid and gas phases. The
VOF implementation in interFoam/ interDyMFoam is an algebraic
VOF method, and geometric reconstruction of the interface is not
performed. In the preceding Eqs. (1)–(4), the equivalent fluid density
and viscosity are given in terms of the local volume fraction as:

q ¼ al ql þ ab qb and l ¼ al ll þ ab lb ð5Þ

The source term fr in Eq. (3) represents the interfacial surface
tension force density that exists at the interface (0 < al < 1) and
fr = 0 everywhere else in the domain. This source term is included
in the momentum equation to alleviate the computational issues
associated with a sharp pressure jump that exists across the liq-
uid–gas interface. In the present VOF methodology, fr is based on
the continuum-surface-force model introduced by Brackbill et al.
(1992), as follows:

f r ¼ � r ½r � ðral= j ralj Þ � ðralÞ ð6Þ

Deshpande et al. (2012) provide a thorough description and VOF
implementation in interFoam, along with extensive validation of
the solver. The multiphase continuity and momentum equations
are solved using a merged PISO-SIMPLE algorithm, while the
Multidimensional Universal Limiter with Explicit Solution
(MULES) algorithm is employed for the volume-fraction transport
equation. This algorithm is an iterative flux-corrected transport
scheme (extended from Zalesak, 1979; Ubbink, 1997; Ubbink and
Issa, 1999). No special treatment of the wall was required as the
bubble did not wet the wall, for the operating conditions and range
of parameters considered.
The instantaneous bubble velocity (ub) in the direction along
the axis of the tube (z-axis, direction of bubble rise) is obtained
by numerically differentiating the position vector of the
centre-of-mass of the bubble (zb), with time; where zb is obtained
by a volume fraction-weighted average of the cell centres over the
domain, containing the bubble. The position of the centre of mass
of the bubble along the z-axis, and the instantaneous velocity for a
representative case is shown in Fig. 3.

To isolate the effects of shear thinning rheology of the liquid
alone, on the bubble dynamics, viscoelasticity of the CMC solu-
tion is not considered in the present study. In support of this
assumption – Benchabane and Bekkour (2008) conducted exten-
sive experiments to characterise the rheology of CMC solutions
for CMC mass fractions in the range 0.2–6%, and noted that the
viscoelastic effects only become significant only beyond a CMC
mass fraction of about 2.5%. Several other studies including
Acharya and Ulbrecht (1978) and Sousa et al. (2007) also pointed
out that the viscoelastic properties of CMC solutions are unim-
portant for low mass fractions, of the order considered in the pre-
sent study (0–1%). Hence, all further mention of
‘‘non-Newtonian’’ behaviour of the fluid considered in the present
research refer to the ‘‘shear-thinning non-Newtonian’’ behaviour
of the CMC solution.

The properties used in the present study for water, CMC solu-
tions and air (bubble phase) are shown in Table 1. The dynamic vis-
cosities of the shear-thinning CMC solutions used in Eqs. (3) and
(5) are determined from the Carreau–Yasuda viscosity model, fol-
lowing Sousa et al. (2005) as:

ll ¼ ll;o þ ð ll;o � l1Þ ½1þ ðk � _cÞC1 �
ðC2�1Þ=C1 ð7Þ



Table 1
Material properties used for the present study.

Fluid q, kg/m3 r, N/m ll,o, Pa-s ll,1, Pa-s k, s C1, – C2, – _c, 1/s Reference

Water 996.58 0.072 8.684 � 10�4 – – – – – R1
0.1% by mass of

CMC in water
996.283 0.0725 0.009 0.001 0.021 0.850 0.871 1–4000 R2, R3

0.4% by mass of
CMC in water

995.394 0.0722 0.110 0.001 0.110 0.809 0.675 0.125–4000 R2, R3

1% by mass of
CMC in water

993.614 0.0715 2.990 0.001 0.365 0.668 0.400 0.04–4000 R2, R3

Air (bubble) 1.1845 – 1.557 � 10�5 – – – – – –

Note: r represents the surface tension of the liquid–air interface.
R1 – NIST Standard Reference Database.
R2 – Sousa et al. (2005).
R3 – Lee et al. (2012).
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where _c is the local strain rate (s�1), ll,o and ll,1 are the dynamic
viscosity at zero and infinite shear, respectively, and k, C1 and C2

are constants. The values for surface tension (r) of CMC solutions
(with air), at different mass fractions, shown in Table 1 is obtained
from Lee et al. (2012). The density of the CMC solution is deter-
mined as:

ql ¼ mf � qCMC þ ð1�mfÞ � qw ð8Þ

where mf is the mass fraction of CMC in water, and qCMC and qw are
the densities of CMC and water respectively.

All computational simulations were carried out using 320–480
cores on the supercomputing facility Magnus with a Cray XC30
system, at iVEC Pawsey Supercomputer Centre, Perth, Australia.
Results and discussion

The results from computational analysis on the dynamics of a
Taylor bubble rising through a vertical cylindrical tube, during
assisted (against the direction of gravity) steady or pulsatile flow
of water (Newtonian) or CMC solution (shear-thinning) is pre-
sented. The range of operating conditions considered for the pre-
sent study is given in Table 2. The range of velocities, bubble and
tube diameters, and fluids are chosen based on the operating
ranges for which the computational methodology is validated
(delineated in section ‘Validation’).

Validation

The present computational methodology is extensively vali-
dated for both Newtonian as well as shear-thinning (power law)
fluids, by comparison of the predicted bubble shape, bubble veloc-
ity, liquid film thickness, and liquid and gas velocities, against ana-
lytical, experimental and computational results in the literature
(Maeda, 1975; Marschall et al., 2014; Chhabra and Richardson,
1999; Hewson et al., 2009; Kamisli and Ryan, 1999).

The first set of experimental data pertains to a freely rising air
bubble (of different sizes) in a vertical cylindrical tube filled with
water (Maeda, 1975). The comparison of the variation in the pre-
dicted bubble rise velocity for different equivalent bubble diame-
ters against the experimental data is shown in Fig. 4(a). It is seen
Table 2
Range of parameters considered for the present study.

Bubble–liquid combination d, mm mf, % ul,

Air bubble in water 5 – 0.
Air bubble in CMC solution (Newtonian-treatment) 10 0.1, 0.4, 1 0.
Air bubble in CMC solution 10 0.1, 1 0.
from the figure that there is excellent agreement between the pre-
sent simulations and experiment with a maximum error of 4%.

The second experimental data set pertains to an elongated
Taylor bubble rising in a vertical square (cross-section) capillary
tube with co-current flow of water (Marschall et al., 2014).
Fig. 4(b) shows the comparison between the present results and
the experimental bubble shapes obtained in the plane along the
diagonal to the square cross-section of the channel. As can be seen
in the figure, the maximum deviation between the predicted and
experimental bubble shapes is less than 1%. This simulation was
carried out on a three dimensional mesh, though the comparisons
of the bubble shapes on other cross-sectional planes are omitted
here for brevity; over all cross-sections, the maximum error in
the predicted bubble length was under 1% compared with the
experimental results from Marschall et al. (2014).

As mentioned in the preceding section, the computational
methodology employed in the present research uses an algebraic
VOF formulation, and additional validation is undertaken to
ascertain its accuracy for multiphase flows involving shear thin-
ning fluid rheologies. The first of these validations consider a
pressure driven flow of a Newtonian and shear-thinning
(power-law) fluid between two fixed walls. The simulation results
are compared against the analytical solution (Chhabra and
Richardson, 1999) for the velocity profiles in each fluid. The fluid
properties considered are: density (for both fluids) = 1 kg/m3, the
dynamic viscosity of the Newtonian fluid is 10�3 Pa-s, and the
effective apparent local dynamic viscosity of the power-law fluid
is defined using:

lapp; l ¼ K _c n�1 and s ¼ K _c n ð9Þ

where s is the shear stress, _c is the strain rate in the fluid, K is the
flow-consistency-index (=0.05 Pa-sn), and n is the power-law index
(=0.5). Further assumptions and details of the analytical solution for
the velocity profiles can also be found in Focke and Bothe (2011).
For the purpose of comparison, the predictions from a coarse and
fine mesh are shown in Fig. 4(c). It is seen from figure that the mag-
nitude of velocity predicted from the present simulations and the
analytical results are in excellent agreement, with a maximum
deviance of less than 1%.

The final validation case identified from the literature considers
the liquid film thickness obtained during the motion of a bubble in
m/s A, – f, Hz de, mm
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a shear thinning (power-law) fluid and is analogous to a
shear-thinning liquid drawn out by a moving plate (Hewson
et al., 2009; Kamisli and Ryan, 1999). For this validation, two
dimensional simulations are carried out for the pressure driven
motion of a neutrally-buoyant elongated bubble, in a
shear-thinning power-law liquid. The width of the channel consid-
ered 1 mm, ql = qb = 1000 kg/m3, and lb = 10�5 Pa-s. The
shear-thinning behaviour of the power-law fluid is defined using
Eq. (9) where K = 5 � 10�3 Pa-sn, with n = 0.652, and the interfacial
surface tension is varied in the range 10�7–10�3 N/m to obtain dif-
ferent modified capillary numbers Cap in the range 0.06–0.8. The
modified capillary number for the power-law fluid is defined
according to Hewson et al. (2009) as:

Cap ¼
K un

b

0:5wrn�1 ; where w is the channel�width ð10Þ
Fig. 4(d) shows the comparison of the predicted value of the
dimensionless liquid film thickness against the experimental val-
ues from Kamisli and Ryan (1999) and computational results from
Hewson et al. (2009), for different modified capillary numbers. The
actual bubble shape obtained from the present simulation and the
asymptotic (analogous) liquid film thickness from Kamisli and
Ryan (1999) are shown in Fig. 4(e) for a representative
Cap = 0.473. It is seen from the figures that the predictions are in
good agreement with the literature for the entire range of capillary
numbers considered, and the predicted bubble diameter
(w � 2 � tfilm) is within 2% of the experimental value (Kamisli
and Ryan, 1999); this corresponds to a deviation of less than 5%
in the dimensionless film thickness.

As mentioned in section ‘Problem description, geometry and
computational domain’ of this paper, while all the simulations
involving elongated Taylor bubbles are performed using an
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axisymmetric mesh, those involving nearly spherical bubbles are
performed using a full 3D mesh. Hence, to ensure consistency in
the computational results reported in this paper, an exercise is car-
ried out to compare the predicted bubble shape and velocities
obtained using 2D axisymmetric and 3D simulations for cases
involving Taylor bubbles. Fig. 5 illustrates the shapes of an elon-
gated Taylor bubble obtained from the two meshes (axisymmetric
and 3D) for a representative case; the operating condition corre-
sponds to a bubble with de = 1.6 cm rising in a circular tube with
d = 0.96 cm filled with water (Maeda, 1975). It is seen from the fig-
ure that the predicted bubble shapes are in excellent agreement
with each other, thus reinforcing the validity of the present com-
putational approach. The predicted bubble rise velocities for the
case using the 2D axisymmetric and 3D meshes were within
±3.5% of each other.

Dynamics of rising bubble in steady and pulsatile flow of water
(Newtonian flow)

As indicated in Table 2, the effect of flow pulsations on the
dynamics of a rising bubble in water is studied for bubble (equiv-
alent) diameters de = 2, 6 and 10 mm, dimensionless pulsation
amplitude A = 0 (steady), 0.25, 0.5 and 1, and frequencies f = 0
(steady), 5 and 10 Hz, for a mean liquid velocity ul = 0.1046 m/s
(corresponding to Re = 600) in a cylindrical tube of diameter
d = 5 mm.

Simulations with an entrapped bubble in steady liquid flow are
performed to enable the isolation of the effects of pulsation on the
dynamics of a rising bubble. Fig. 6 illustrates the variation in the
velocity of an air bubble rising in a circular tube (d = 5 mm), with
water flowing co-currently at Re = 600. It is seen from the figure
that for the range of bubble diameters considered, the velocity of
the air bubble decreases with an increase in bubble size (or de),
and remains invariant for bubble diameters greater than the diam-
eter of the tube. This is due to the fact that the influence of buoy-
ancy (against drag inside the tube) is relatively greater for smaller
bubbles, while the velocities of larger elongated bubbles that occur
for bubble diameter greater than the diameter of the tube are
determined by the average liquid velocity in the tube. Several stud-
ies (Maeda, 1975; Quan, 2011; Nicklin et al., 1962) have pointed
out the rise velocity of Taylor bubbles in flowing liquid can be
quantified as a linear combination of the co-current liquid velocity
and the rise velocity of the bubble in a stagnant liquid as:

ub ¼ kl ul þ ub;s þ k2 ð11Þ

where k1 and k2 are constants and ub,s is the bubble rise velocity in a
tube with stagnant fluid. Under conditions where a large bubble
does not rise in the tube with stagnant liquid, ub,s = 0, and k2 takes
a negative value that depends on the tube diameter (Maeda, 1975),
while for conditions where the bubble rises freely in a stagnant liq-
uid, k2 = 0. It is also seen from the Fig. 6 that the terminal velocity of
the Taylor bubbles (de = 6, 10 mm) obtained from the present sim-
ulations correlate very well against Maeda (1975), where,
k1 = 1.19, k2 = �0.0055 m/s, with an error <1%.

Fig. 7 shows the transient evolution of bubble rise velocity for
different bubble sizes (de = 2, 6, 10 mm) under the same operating
conditions as described for Fig. 6. While it is seen that the Taylor
bubbles (de = 6, 10 mm) reach a steady terminal rise velocity, the
smaller bubble (de = 2 mm) exhibits an oscillating velocity,
although with a constant time averaged velocity magnitude. This
is observed from the simulations to be due to a helical motion
exhibited by the bubble, as also reported by several studies in
the literature (Uno and Kintner, 1956; Tomiyama et al., 2002;
Karamanev, 2001). In addition, an oscillation in the shape of the
bubble was also observed, which reflects in the transient evolution
of the bubble’s centre of mass, and thus in the bubble velocity. It is
pointed out that the quantification of the aforementioned oscilla-
tion in bubble velocity is important to isolate the effect of pulsatile
flow characteristics on the (oscillating) bubble velocity; this is dis-
cussed in the following section.

A comparison of the oscillating steady state velocities exhibited
by the different sized bubbles moving in pulsatile flow of water, for
a representative set of pulsation amplitudes A = 0.25, 0.5, and fre-
quencies f = 5, 10 Hz, is illustrated in Fig. 8(a)–(d). It is seen from
the figures that irrespective of the amplitude or frequency of pul-
sation, the larger bubbles rise in the tube with a velocity that oscil-
lates in-phase with the applied flow pulsations, while the smaller
bubble (de = 2 mm) seem to exhibit multiple frequencies in the
oscillating rise velocity. It is also seen that similar to the steady
flow conditions, the elongated bubbles with de = 6 mm and
10 mm show identical oscillating characteristics in rise velocity
during pulsatile flow. Recalling from the discussion presented in
the preceding paragraph that the bubble with de = 2 mm moves
in helical path during steady co-current flow, the multiple frequen-
cies exhibited by the bubble velocity as seen in Fig. 8(a)–(d) can be
attributed to the direct consequence of the bubble exhibiting a
similar motion during pulsatile flow conditions. It is seen from
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the discrete Fourier transform of the oscillating steady state veloc-
ity for de = 2 mm, shown in Fig. 9, that the secondary frequency (i.e.
other than the frequency of the pulsatile flow) is nearly 30 Hz, and
invariant with any change in the applied amplitude of frequency of
the pulsatile flow. It is also seen that, while the secondary fre-
quency remains nearly unchanged with any variation in pulsatile
flow characteristics, the amplitude of the bubble velocity pertain-
ing to the secondary frequency reduces marginally for a prescribed
change in f from 5 Hz to 10 Hz. It is also interesting to note that the
amplitude of bubble velocity (for the primary frequency) increases
slightly with an increase in pulsation frequency. This observation is
evident from Fig. 10, where the effect velocity amplitudes obtained
from Fourier transforms are compared for four pulsation frequen-
cies (0, 5, 10, 30 and 40 Hz); note that f = 30 Hz corresponds to a
pulsation frequency equal to the secondary frequency in the bub-
ble velocity due to its helical.

Fig. 11(a)–(d) illustrates the effect of pulsatile flow frequency
and amplitude, respectively, on the oscillating steady state bubble
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velocities for de = 2 and 6 mm. Data for de = 10 mm is not shown for
brevity, as the qualitative trends are same as that obtained for
de = 6 mm. It is seen from the figures that while there is a concomi-
tant variation in the oscillating amplitude and frequency of bubble
velocity for any change in f or A over the range considered, there is
no marked influence on the time-averaged bubble velocity. It was
also observed that for the range of bubble diameters, pulsation
amplitudes and frequencies explored in the present work with
water as the liquid phase, the bubbles remained intact, and pulsa-
tions did not result in any bubble breakup.

Effect of shear-thinning liquid rheology on the dynamics of single
Taylor bubble in steady co-current flow

As indicated in Table 2, the effect of shear thinning behaviour
during steady co-current flow is studied for bubble diameters
de = 10 and 20 mm, mean liquid velocity ul = 0.1 and 0.4 m/s, mass
fraction of CMC in solution mf = 0.1%, 0.4% and 1%, in a cylindrical
tube of diameter d = 10 mm.

Fig. 12(a)–(c) shows the comparison between the bubble shapes
obtained using Newtonian and shear-thinning treatment for the
liquid viscosity, for mf = 0.1%, 0.4% and 1%, and for a representative
set of other controlling parameters, ul = 0.1 m/s, de = 2 cm and
d = 1 cm. The contours shown in the top-half of the figures indicate
the variation in the liquid phase dynamic viscosity (due to
shear-thinning), while the bottom-half of the figures show the cor-
responding bubble shapes obtained using a Newtonian treatment
for the liquid viscosity, where a constant dynamic viscosity same
as the zero-shear viscosity is prescribed, based on mf (see
Table 1). It is evident from the figures that an increase in mf (or
increase in the liquid phase dynamic viscosity) results in a con-
comitant increase in the length of the Taylor bubble, under both
Newtonian as well as non-Newtonian conditions. As a conse-
quence, the liquid film thickness (between the bubble–liquid inter-
face and the tube wall) also increases with an increase in the mf. In
a recent Quan (2011) pointed out that an increase in the liquid
viscosity increases the viscous drag on the rising bubble, thereby
tending to elongate the bubble. In a similar experimental work,
study, Kajero et al. (2012) indicated that the relative elongation
of the bubble with increase in liquid viscosity may be characteristic
to flow inside tubes, and that the relative elongation with increase
in viscosity will be pronounced for smaller tube diameters. A com-
parison of the lengths of the Taylor bubbles (lb) obtained from
using Newtonian and non-Newtonian treatment of the liquid vis-
cosity is shown in Fig. 13, for controlling parameters same as that
in shown in Fig. 12(a)–(c). It is seen from Figs. 12(a)–(c) and 13
that, while the length of the Taylor bubbles increases with an
increase in mf under both Newtonian and shear-thinning condi-
tions, the length of the bubble is consistently longer when the liq-
uid is treated as a Newtonian fluid. It is also seen from the Fig. 13
that the difference between the lengths of the bubbles obtained
using the Newtonian and non-Newtonian treatments increases
with an increase in mass fraction of CMC in the solution. This is
due to the fact that, under non-Newtonian conditions, the effective
dynamic viscosity of the liquid is lesser than ll,o in the tube due to
the liquid-shear with the tube walls (as the CMC solution is a
shear-thinning liquid). Hence, in line with the preceding discus-
sion, that the bubble length increases with an increase in liquid
viscosity, the reduction in the viscosity (and hence, the drag) due
to shear under non-Newtonian conditions results in consistently
shorter Taylor bubbles under shear-thinning conditions. In coher-
ence, as the effect of shear in the liquid film around the bubble
on the reduction of viscosity increases with an increase in the mass
fraction of CMC (see Table 1: the dynamic viscosity reduces by
about one order of magnitude for mf = 0.1%, while more than three
orders of magnitude for mf = 1%, over the range of strain rates), the
reduction in the effective viscosity is relatively higher for higher
values of mf due to the rheological characteristics of the fluid.
Thus, a greater difference in the bubble lengths is observed for rel-
atively higher values of mf as seen in the figure. This is corrobo-
rated by the variation in the ratio of non-Newtonian liquid
viscosity to the zero-shear viscosity along the inlet of the tube
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(under fully developed flow) shown in Fig. 14. The variation in the
dynamic viscosity between the tube-axis and the tube-walls
increases from about 10% for mf = 0.1% and ul = 0.1 m/s (and about
20% for ul = 0.4 m/s) to about 90% for mf = 1% (and 95% for
ul = 0.4%), ceteris paribus.

As the present study deals with upward (co-current) liquid
flow, buoyancy force as well as the pressure gradient in the tube
synergistically aid bubble rise, due to which, the bubble velocity
is greater than the mean liquid velocity. As the bubble progresses
in the liquid, the surrounding liquid is pushed around the bubble
from the nose to the tail resulting in a flow field similar to a
pressure-driven Poiseuille flow (in the direction opposite to bubble
rise) in the liquid layer adjacent to the elongated section of the
Taylor bubble (Quan, 2011; Nogueira et al., 2005). The fully devel-
oped flow in the liquid film can be seen from the velocity profiles
shown in Fig. 15 for a representative case. Fig. 16 illustrates the
variation in this fully developed liquid velocity in the liquid film
for different values of mf = 0.1%, 0.4% and 1%, obtained under
Newtonian and shear-thinning conditions, for ul = 0.1 m/s,
de = 2 cm and d = 1 cm. It is seen from the figure that the velocity
in the liquid film reduces with an increase in mf (or implicitly,
the dynamic viscosity) under both Newtonian and
non-Newtonian conditions, due to the thicker liquid film obtained
under higher values of mf (see Fig. 12). For the largest mass fraction
of CMC (1%) considered in the present study, the liquid film veloc-
ity is almost zero under both Newtonian and non-Newtonian con-
ditions, as seen in the figure. The manifestation of the relatively
low liquid flow rate in the liquid film, indicative of a low liquid
strain rate in region, is seen as the higher values of dynamic viscos-
ity in the liquid film in the contours illustrated in Fig. 12(c). It is
also seen that the liquid velocity under non-Newtonian conditions
is consistently higher than under Newtonian treatment for any
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given value of the mf. This can be attributed to the direct conse-
quence of the shear induced reduction in the dynamic viscosity
of the liquid under non-Newtonian conditions, as outlined in the
preceding paragraph (discussion on Fig. 14). It is also seen from
Fig. 16 that the difference in the velocity at the liquid–bubble
interface (indicated with a line in the figure) between the
Newtonian and non-Newtonian conditions increases with an
increase in mf = 0.1–0.4%, but subsequently decreases for mf = 1%.

Fig. 17 shows the variation in the terminal velocity of the bub-
ble with change in CMC mass fraction for different equivalent bub-
ble diameters de = 1, 2 cm, and mean liquid velocities ul = 0.1,
4 m/s, obtained under Newtonian and non-Newtonian conditions.
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It is seen from the figures that the velocities of the bubbles with
both de = 1 cm and 2 cm, are equivalent, irrespective of other con-
trolling parameters. While this was already noted in the discussion
presented in the previous section of this paper on Taylor bubbles
moving through water, the same appears to hold good under
non-Newtonian conditions as seen in Fig. 17. It is also seen from
the figure that for the Newtonian conditions, the bubble velocity
increases with an increase in mass fraction for the range of param-
eters considered. This can be attributed to the fact that, while the
buoyancy force is the same for all values of mf due to a negligible
change in the liquid density over the range of mf considered, the
pressure difference across the tube to drive the liquid at the veloc-
ity ul increases with an increase in mf (due to the concordant
increase in dynamic viscosity), thus aiding in the upward move-
ment of the bubble. In addition, the reduction in the
cross-sectional diameter of the bubble for a greater mf (see
Fig. 12), results in a reduced pressure drag force on the bubble
(Nogueira et al., 2005). This is contrary to what happens during
the rise of Taylor bubbles in stagnant fluids where the rise velocity
decreases with an increase in liquid viscosity (Nogueira et al.,
2005; Sousa et al. 2005). This is because, unlike co-current flow
where the pressure difference across the tube increases with an
increase in liquid viscosity (or mf) for any given value of ul, the
hydrodynamic head remains the same with any change in mf dur-
ing bubble rise in a stagnant column of liquid due to a negligible
change in liquid density with change in mf. It is however seen that
the degree to which the bubble velocity increases with increase in
mass fraction is lower between mf = 0.4% and 1% as compared to
mf = 0.1% and 0.4%, due to the greater influence of the shear drag
on the bubble for higher viscosities (or mf). In line with this discus-
sion, and considering that the dynamic viscosity of the liquid in the
tube under non-Newtonian conditions is lower than that under
Newtonian conditions, the bubble rise velocity under the former
are consistently relatively lower, irrespective of other controlling
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parameters. Besides, as shown in the representative case in Fig. 18
(ul = 0.1 m/s. de = 1 cm, d = 1 cm, mf = 0.4%), the sharper nose of the
bubble obtained during the Newtonian condition results in a lower
drag force on the bubble as compared to the relatively blunt nose
observed in the non-Newtonian condition, thereby resulting in a
higher bubble velocity during the Newtonian condition. It is also
seen that the bubble velocity reduces, although marginally,
between mf = 0.4% and 1%, under the non-Newtonian treatment,
for ul = 0.1 m/s, indicating that an optimum value of mf may exist
for any given value of the mean co-current liquid velocity for a
maximum bubble velocity (or least drag). For any given value of
mf, as the liquid viscosity in the tube is relatively greater for
ul = 0.1 m/s as compared to ul = 0.4 m/s (see Fig. 14), it is possible
that the optimum value of mf for ul = 0.4 m/s is greater than that
for ul = 0.1 m/s; not obtained under the range of parameters con-
sidered. It is also seen from Fig. 19 that the curvature at the bubble
nose is greater for ul = 0.4 m/s as compared to ul = 0.1 m/s irrespec-
tive of the bubble size. The results for the corresponding
Newtonian cases are similar, and hence omitted for brevity. The
sharper nose of the bubble results in reduced pressure drag on
the bubble at higher velocities. It is inferred from
Figs. 19 and 12(a)–(c), that both, the co-current flow velocity as
well as the liquid viscosity affects the bubble shape. It was
(a) (b)
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reported in Quan (2011) that the assumption of dimensional sim-
ilarity for the bubble shapes as presented in Dumitrescu (1943) is
not entirely accurate, and the liquid viscosity affected the bubble
shape of the Taylor bubbles, particularly during co-current flows.
In addition, the computational simulations carried out in the pre-
sent research have shed light on the effects of non-Newtonian vis-
cosity variation on the bubble shape and dynamics under different
co-current flow conditions.

Dynamics of a single Taylor bubble in pulsatile co-current flow of
shear-thinning liquid

As indicated in Table 2, the effect of flow pulsations on the
dynamics of a rising Taylor bubble in non-Newtonian fluid
co-current flow is studied for de = 20 mm, ul = 0.1 and 0.4 m/s,
mf = 0.1, and 1%, in a cylindrical tube with d = 10 mm.

Figs. 20(a)–(h) and 21(a)–(h) show the shape and progression
(over a cycle of pulsation) of a rising Taylor bubble during pulsatile
co-current flow for mf = 0.1% and 1%, respectively, and for ul = 0.1 -
m/s, f = 5 Hz and A = 1. It is seen from the figures that, as observed
during steady co-current flow conditions, the length of the bubble
is consistently longer for mf = 1% as compared to mf = 0.1% even
during pulsatile flow. It is also seen that the length of the bubble
does not vary significantly during the cycle of pulsation for both
cases; the calculated variation in the bubble length over a cycle
of pulsation is <0.9%. It is interesting to note that while the quali-
tative shape of a Taylor bubble for mf = 0.1% is the same as that
observed during steady flow conditions, there exists a distinct
waviness (ripple) in the shape, particularly in the elongated region
of the bubble, for mf = 1%. The wavelength of the ripple on the body
of the Taylor bubble is about 45 mm for the case shown in the fig-
ure for mf = 1%. It is also seen from the Fig. 21(a)–(h) that the loca-
tions of the ripple with reference to the tube-wall stays constant
over the cycle, thus resulting in standing wave, as the bubble pro-
gresses upward through the tube. This would imply that the rip-
ples on the bubble’s body move in a direction opposite to the
bubble and at the same velocity as the bubble’s rise velocity, which
is unlike the capillary waves that generally progress upward from
the tail of the bubble. Liberzon et al. (2006) showed that the capil-
lary waves are primarily induced on the liquid–bubble interface
due to the oscillations in the tail of the bubble and propagate
upwards, depending on the wave-current interactions along the
liquid film. Fig. 22(a)–(h) shows the shape and progression of the
bubble for f = 10 Hz, and other parameters same as those men-
tioned for Fig. 21(a)–(h). From a comparison of the two aforemen-
tioned figures with mf = 1%, it is seen that the number of ripples on
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the bubble increases with the frequency of the pulsatile flow.
Interestingly, the wavelength of the ripples decreases proportion-
ally with the frequency of co-current flow pulsation. The calculated
wavelength of the ripple for f = 10 Hz was 22.5 mm, while that for
f = 5 Hz, ceteris paribus, is 45 mm. It is also seen from the figures
that the amplitude of the ripple on the body of the bubble remains
nearly the same for the two frequencies considered, irrespective of
the location of the ripples on the bubble. It is seen from a
comparison of the bubble shapes between A = 0.5 and 1 (ul = 0.1 -
m/s, mf = 1%, f = 10 Hz) shown in Fig. 23(a) and (b) that the ampli-
tude (and also the peak-to-valley distance) of the ripple on the
body of the bubble decreases with a decrease in amplitude of
co-current flow pulsation. The peak to valley length on the ripple
(in the fully developed liquid film region) for the cases shown in
Fig. 23(a) and (b) is found to be about 0.15 mm for A = 0.5and about
0.26 mm for A = 1.
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The velocity inside and around the bubble for mf = 0.1% and
mf = 1% for a representative set of other controlling parameters is
illustrated in Fig. 24(a) and (b). It is seen that while for mf = 0.1%,
the re-circulation region inside the bubble extends to the full
length of the bubble (as is the case for any rising Taylor bubble
in steady co-current flow (Quan, 2011)), there are individual
re-circulation regions near each ripple for the case with mf = 1%;
note that only one such section of the bubble is shown in
Fig. 24(b) for an enhanced view of the local flow field. It is also seen
from the dynamic viscosity contours shown in Fig. 24(b) that the
local dynamic viscosity in the region of the ripple is relatively
higher than the regions upstream and downstream. The localised
region of high viscosity results in a greater drag on the bubble in
the vicinity. From the linear relationship between the frequency
of pulsation and the number of ripples found on the bubble out-
lined earlier, it is understood that the standing wave (in the tube)
plays a direct role in determining the number of ripples, or in influ-
encing the spacing between the locations of the tube that poten-
tially result in ripples on the bubble. Besides, the proportional
change in the size of the ripple with change in amplitude of pulsa-
tion also suggests a strong relationship between the imposed fluid
pulsations on the formation of ripples on the surface. Hence, it is
understood that the complex interplay between the variations in
viscosity due to the standing waves generated in the tube at speci-
fic locations (based on the frequency) and magnitude (based on
amplitude), along with the large film thickness that are obtained
for relative high viscosities (as discussed in section ‘Effect of
shear-thinning liquid rheology on the dynamics of single Taylor
bubble in steady co-current flow’) eventually lead to several recir-
culation cells inside the bubble due to a localised increase in drag
on the bubble, along with ripples on the bubble–liquid interface.
An additional simulation was carried out for f = 10 Hz, A = 1 and
ul = 0.1 m/s by assuming the fluid to be Newtonian (with
mf = 0.4%) to isolate the effects of non-Newtonian viscosity varia-
tion on the formation of the ripples on the Taylor bubble. Fig. 25
illustrates the corresponding bubble shape and streamlines inside
and around the bubble for the aforementioned case. It is seen that,
similar to the observation in the non-Newtonian cases discussed
earlier, individual recirculation cells inside the bubble are also
observed in the Newtonian fluid, along with waviness of the bub-
ble surface. However, the shape and structure of this waviness are
irregular in comparison to non-Newtonian cases discussed earlier.
Hence, it is possible that as both, the liquid as well as the gas are
incompressible (for the conditions assumed in the present
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research), the viscosity variation in the non-Newtonian liquid work
in tandem with the standing waves in the tube due to pulsatile
flow (which seem to have a greater impact on the ripples), as com-
pared to the Newtonian cases, to result in relatively more regular
ripples on the bubble. Hence, the characteristics of the ripples on
the Taylor bubble rising in co-current flow are dictated by the com-
bined effect of the five factors: (i) characteristics of the pulsatile
flow, (ii) surface tension of the liquid–gas combination, (iii) buoy-
ancy, (iv) liquid viscosity, and (v) dimensions of the tube. Since
such ripples are not observed under low liquid viscosities
(Fig. 23(a)–(h)), the greater liquid film thickness that exists for rel-
atively greater viscosities under both Newtonian as well as
non-Newtonian conditions (Fig. 12) is able to better accommodate
the oscillations on the liquid–bubble interface. A further investiga-
tion is required to characterise the ripples on the Taylor bubbles
based on the five strongly influencing parameters identified in
the present study.

Fig. 26 shows the variation in the bubble velocity, with change
in the amplitude of pulsatile flow velocity, for different mass frac-
tions of CMC (mf = 0.1% and 1%), and for ul = 0.1 m/s and f = 10 Hz.
It is seen from the figures that, as expected, the amplitude of oscil-
lating bubble velocity increases concomitantly with an increase in
pulsatile flow amplitude, for both values of mf shown. However, for
any given amplitude of pulsatile flow, the amplitude of oscillating
bubble velocity is consistently higher for mf = 1% as compared for
mf = 0.1%. Extending this observation, and considering that the vis-
cosity variation due to fluid shear for mf = 0.1% is significantly
lower (making it behave more like a Newtonian fluid), it is evident
that the bubble responds to pulsations in a non-Newtonian fluid
relatively more than in a Newtonian fluid. The relative change in
the bubble velocity with change in the liquid velocity under steady
conditions as shown in Fig. 27 is also indicative that the change in
bubble velocity with a change in liquid velocity (through a cycle of
pulsation) is greater for relatively higher values of mf. Fig. 28 shows
the variation in bubble velocity with variation in pulsatile flow fre-
quency for different values of mf = 0.1% and 1%, and for a represen-
tative case: ul = 0.1 m/s and A = 1. It is seen that unlike the
influence of pulsatile flow amplitude, the effect of pulsatile flow
frequency is negligible on the transient characteristics of the bub-
ble velocity over the range of parameters considered, despite sig-
nificant differences observed in the bubble shape with an
increase in frequency. The bubble exhibits an oscillatory velocity
with a frequency same as the applied pulsatile flow, and without
any phase difference.

Fig. 29(a) and (b) shows the comparison of the transient oscil-
lating bubble velocity and dimensionless bubble velocity with
change in mf for different mean pulsatile flow velocities ul = 0.1
and 0.4 m/s, and for representative values of f = 10 Hz and
A = 0.5. With a view to evaluate the effectiveness of flow pulsations
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on the rise velocity of Taylor bubbles in a co-current flow of
shear-thinning fluids, the dimensionless bubble velocity is defined
as follows:

u�b ¼ ðub;p � ub;s Þ=ub;s ð10Þ

where ub,p and ub,s are the bubble rise velocities under pulsatile and
steady co-current flows, respectively. It is seen from the figures that
the change in the amplitude of oscillating bubble velocity is greater
for ul = 0.1 m/s as compared to ul = 0.4 m/s. This can be attributed to
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the fact that the relative change in the liquid viscosity with change
in instantaneous liquid velocity over a cycle of pulsation is greater
for ul = 0.1 m/s as compared to ul = 0.4 m/s. It was also observed
in the simulations that under conditions of higher dimensionless
pulsatile flow amplitudes (such as A = 1 considered for the present
study) and high co-current liquid velocity, irrespective of the value
of pulsatile flow frequency over the range studied in the present
research, the Taylor bubble disintegrated into smaller bubbles.
Considering the inferences from Figs. 26, 27 and 29(a) and (b), the
present study reveals that the dynamics of a Taylor bubble in pul-
satile non-Newtonian flow is more susceptible to the amplitude
than the frequency of co-current flow pulsations. It is also reason-
able to assume that the introduction of flow pulsations with large
amplitudes can be a viable technique to break the elongated
Taylor bubbles in applications involving slug flows. However, it is
pointed out that the behaviour and response of a stream of Taylor
bubbles in continuous slug flows may be different from that
observed in the present study with a single Taylor bubble. Hence
a further investigation is required to characterise the conditions
under which bubble breakup may occur for continuous slug flows.
It is also pointed out that a complete 3-dimensional modeling of
the flow domain may be required to capture bubble breakup to
avoid unphysical bubble shapes (such as annular bubbles) that
may be obtained under 2-dimensional axisymmetric conditions.
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Conclusions

A computational analysis using the algebraic VOF approach
available in OpenFOAM is carried out to determine the effects of
co-current steady and pulsatile flow on the shape and rise velocity
of a Taylor bubble in both Newtonian and shear-thinning
non-Newtonian liquids with different viscous properties. The key
conclusions derived from the present investigation are as follows:

(i) Unlike the Taylor bubbles, the smallest bubble (with an equiv-
alent diameter de = 0.2 cm) exhibited an oscillatory helical
motion under both steady as well as pulsatile co-current flow
conditions. A secondary oscillatory frequency (i.e. other than
the frequency of pulsatile co-current flow) is observed at
approximately 30 Hz, irrespective of the amplitude or fre-
quency of the co-current liquid velocity.

(ii) The transient and time-averaged velocities of the elongated
Taylor bubbles were equivalent under both steady as well as
pulsatile co-current flows in the air–water system.

(iii) In contrast to observations in stagnant liquid columns, an
increase in the dynamic viscosity of the liquid (Newtonian)
results in a concomitant increase in the bubble velocity for
any given co-current liquid velocity; for shear-thinning
non-Newtonian liquids, the change in the bubble velocity
with an increase in mf is comparatively greater at higher
co-current velocities.

(iv) During bubble rise in pulsatile flows of shear-thinning liq-
uids, distinct ripples are found to occur on the bubble sur-
face at higher values of mf, the locations of which
remained stationary with reference to the tube for any given
pulsatile flow frequency. In contrast, capillary waves were
found to occur on the Taylor bubble rising in high viscosity
Newtonian liquids.

(v) The amplitude and wavelength of the ripples varied propor-
tionally with the amplitude and frequency of the of
co-current flow pulsation, respectively.

(vi) The amplitude of the bubble velocity oscillations increase
with an increase in the mass fraction of CMC in water for
any given amplitude of pulsatile co-current flow; the effect
of frequency on the rise velocity of the bubble was found
to be weak for the range of parameters studied.

(vii) For high amplitude and mean velocity of the pulsatile flow,
the bubble was found to disintegrate into smaller bubbles.
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